Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Bioelectron Med ; 9(1): 24, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936169

RESUMO

Neuroinflammation is an important biological process induced by complex interactions between immune cells and neuronal cells in the central nervous system (CNS). Recent research on the bidirectional communication between neuronal and immunological systems has provided evidence for how immune and inflammatory processes are regulated by nerve activation. One example is the gateway reflex, in which immune cells bypass the blood brain barrier and infiltrate the CNS to cause neuroinflammation. We have found several modes of the gateway reflex in mouse models, in which gateways for immune cells are established at specific blood vessels in the spinal cords and brain in experimental autoimmune encephalomyelitis and systemic lupus erythematosus models, at retinal blood vessels in an experimental autoimmune uveitis model, and the ankle joints in an inflammatory arthritis model. Several environmental stimulations, including physical and psychological stresses, activate neurological pathways that alter immunological responses via the gateway reflex, thus contributing to the development/suppression of autoimmune diseases. In the manuscript, we describe the discovery of the gateway reflex and recent insights on how they regulate disease development. We hypothesize that artificial manipulation of specific neural pathways can establish and/or close the gateways to control the development of autoimmune diseases.

2.
Front Vet Sci ; 10: 1192888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519997

RESUMO

Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic inflammatory bowel disease (IBD) characterized by granulomatous inflammation that consists of neutrophil infiltration and goblet cell hyperplasia in the colon. Recently, we identified five MD-associated single-nucleotide polymorphisms (SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is associated with the ICRP pathology. We found that the frequency of the T/T SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments showed that TG expression in non-immune cells was increased by inducing the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and a target of the IL-6 amplifier. We also found that TG expression together with two NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs with the T/T risk allele compared to those with the C/C non-risk allele, but serum TG was not increased. Cumulatively, these results suggest that the T/T SNP is an expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6 amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target for ICRP.

3.
Vet Immunol Immunopathol ; 261: 110609, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201379

RESUMO

Sheep have been used as a large animal experimental model for studying infectious diseases. However, due to a lack of staining antibodies and reagents, immunological studies on sheep have not progressed. The immunoinhibitory receptor programmed death-1 (PD-1) is expressed on T lymphocytes. The interaction of PD-1 with its ligand PD-ligand 1 (PD-L1) delivers inhibitory signals and impairs proliferation, cytokine production, and cytotoxicity of T cells. We previously reported that the PD-1/PD-L1 pathway was closely associated with T-cell exhaustion and disease progression in bovine chronic infections using anti-bovine PD-L1 monoclonal antibodies (mAbs). Furthermore, we found that blocking antibodies against PD-1 and PD-L1 restore T-cell functions and could be used in immunotherapy of cattle. However, the immunological role of the PD-1/PD-L1 pathway in chronic diseases of sheep remains unknown. In this study, we identified cDNA sequences of ovine PD-1 and PD-L1 and examined the cross-activity of anti-bovine PD-L1 mAbs against ovine PD-L1 as well as the expression of PD-L1 in ovine listeriosis. The amino acid sequences of ovine PD-1 and PD-L1 share a high degree of identity and similarity with homologs from ruminants and other mammalian species. Anti-bovine PD-L1 mAb recognized ovine PD-L1 on lymphocytes in the flow cytometric assay. Furthermore, an immunohistochemical staining confirmed the PD-L1 expression on macrophages in the brain lesions of ovine listeriosis. These findings indicated that our anti-PD-L1 mAb would be useful for analyzing the ovine PD-1/PD-L1 pathway. Further research is needed to determine the immunological role of PD-1/PD-L1 in chronic diseases such as BLV infection through experimental infection of sheep.


Assuntos
Receptor de Morte Celular Programada 1 , Linfócitos T , Bovinos , Animais , Ovinos , Ligantes , Sequência de Aminoácidos , Anticorpos Monoclonais , Antígeno B7-H1 , Mamíferos
4.
J Immunol ; 211(1): 34-42, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212607

RESUMO

We recently discovered a (to our knowledge) new neuroimmune interaction named the gateway reflex, in which the activation of specific neural circuits establishes immune cell gateways at specific vessel sites in organs, leading to the development of tissue-specific autoimmune diseases, including a multiple sclerosis (MS) mouse model, experimental autoimmune encephalomyelitis (EAE). We have reported that peripheral-derived myeloid cells, which are CD11b+MHC class II+ and accumulate in the fifth lumbar (L5) cord during the onset of a transfer model of EAE (tEAE), play a role in the pain-mediated relapse via the pain-gateway reflex. In this study, we investigated how these cells survive during the remission phase to cause the relapse. We show that peripheral-derived myeloid cells accumulated in the L5 cord after tEAE induction and survive more than other immune cells. These myeloid cells, which highly expressed GM-CSFRα with common ß chain molecules, grew in number and expressed more Bcl-xL after GM-CSF treatment but decreased in number by blockade of the GM-CSF pathway, which suppressed pain-mediated relapse of neuroinflammation. Therefore, GM-CSF is a survival factor for these cells. Moreover, these cells were colocalized with blood endothelial cells (BECs) around the L5 cord, and BECs expressed a high level of GM-CSF. Thus, GM-CSF from BECs may have an important role in the pain-mediated tEAE relapse caused by peripheral-derived myeloid cells in the CNS. Finally, we found that blockade of the GM-CSF pathway after pain induction suppressed EAE development. Therefore, GM-CSF suppression is a possible therapeutic approach in inflammatory CNS diseases with relapse, such as MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Sistema Nervoso Central , Dor/metabolismo , Células Mieloides , Recidiva
5.
Bio Protoc ; 13(7): e4644, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056247

RESUMO

Microinflammation enhances the permeability of specific blood vessel sites through an elevation of local inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. By a two-dimensional immunohistochemistry analysis of tissue sections from mice with experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), we previously showed that pathogenic immune cells, including CD4+ T cells, specifically accumulate and cause microinflammation at the dorsal vessels of the fifth lumbar cord (L5), resulting in the onset of disease. However, usual pathological analyses by using immunohistochemistry on sections are not effective at identifying the microinflammation sites in organs. Here, we developed a new three-dimensional visualization method of microinflammation using luminescent gold nanoclusters (AuNCs) and the clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC) tissue-clearing method. Our protocol is based on the detection of leaked AuNCs from the blood vessels due to an enhanced vascular permeability caused by the microinflammation. When we injected ultrasmall coordinated Au13 nanoclusters intravenously (i.v.) to EAE mice, and then subjected the spinal cords to tissue clearing, we detected Au signals leaked from the blood vessels at L5 by light sheet microscopy, which enabled the visualization of complex tissue structures at the whole organ level, consistent with our previous report that microinflammation occurs specifically at this site. Our method will be useful to specify and track the stepwise development of microinflammation in whole organs that is triggered by the recruitment of pathogenic immune cells at specific blood vessels in various inflammatory diseases.

6.
IJID Reg ; 7: 130-135, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37025347

RESUMO

Objectives: Trichomonas vaginalis is the most prevalent sexually transmitted parasite worldwide. However, no surveillance system exists to monitor T. vaginalis cases and drug resistance in Japan. Methods: Cervical cytology vaginal swabs were collected from women with and without suspected symptoms of T. vaginalis infection; these swabs were used for the detection of T. vaginalis, human papillomavirus (HPV), and Candida albicans using specific polymerase chain reaction. Clinical isolates of T. vaginalis were subjected to metronidazole susceptibility tests using the previously reported minimal lethal concentration (MLC) and newly established half-maximal inhibitory concentration (IC50) values. Results: The prevalence of T. vaginalis in the study population was 4.2% (5/119; 95% confidence interval [Cl], 1.5-9.7). Additionally, asymptomatic infection constituted 60% (3/5) of all cases of T. vaginalis infection. All T. vaginalis-positive patients were coinfected with HPV but not C. albicans. Five clinical T. vaginalis isolates showed metronidazole susceptibility, which was evaluated using MLC values. The quantitative IC50 values revealed that two of these clinical isolates exhibited a decreased metronidazole susceptibility. Conclusion: This is the first study to demonstrate the prevalence of T. vaginalis in Japanese women. The IC50 values of metronidazole against T. vaginalis enabled the precise and quantitative evaluation of metronidazole-susceptible T. vaginalis.

7.
Acta Neuropathol ; 145(5): 637-650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36879070

RESUMO

A missense variant from methionine to arginine at codon 232 (M232R) of the prion protein gene accounts for ~ 15% of Japanese patients with genetic prion diseases. However, pathogenic roles of the M232R substitution for the induction of prion disease have remained elusive because family history is usually absent in patients with M232R. In addition, the clinicopathologic phenotypes of patients with M232R are indistinguishable from those of sporadic Creutzfeldt-Jakob disease patients. Furthermore, the M232R substitution is located in the glycosylphosphatidylinositol (GPI)-attachment signal peptide that is cleaved off during the maturation of prion proteins. Therefore, there has been an argument that the M232R substitution might be an uncommon polymorphism rather than a pathogenic mutation. To unveil the role of the M232R substitution in the GPI-attachment signal peptide of prion protein in the pathogenesis of prion disease, here we generated a mouse model expressing human prion proteins with M232R and investigated the susceptibility to prion disease. The M232R substitution accelerates the development of prion disease in a prion strain-dependent manner, without affecting prion strain-specific histopathologic and biochemical features. The M232R substitution did not alter the attachment of GPI nor GPI-attachment site. Instead, the substitution altered endoplasmic reticulum translocation pathway of prion proteins by reducing the hydrophobicity of the GPI-attachment signal peptide, resulting in the reduction of N-linked glycosylation and GPI glycosylation of prion proteins. To the best of our knowledge, this is the first time to show a direct relationship between a point mutation in the GPI-attachment signal peptide and the development of disease.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Animais , Camundongos , Humanos , Proteínas Priônicas/genética , Mutação Puntual , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Sinais Direcionadores de Proteínas/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Príons/genética , Príons/metabolismo , Mutação/genética
8.
Int Immunol ; 35(7): 313-326, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933193

RESUMO

Using a zoobiquity concept, we directly connect animal phenotypes to a human disease mechanism: the reduction of local plasminogen levels caused by matrix metalloproteinase-9 (MMP9) activity is associated with the development of inflammation in the intestines of dogs and patients with inflammatory bowel disease. We first investigated inflammatory colorectal polyps (ICRPs), which are a canine gastrointestinal disease characterized by the presence of idiopathic chronic inflammation, in Miniature Dachshund (MD) and found 31 missense disease-associated SNPs by whole-exome sequencing. We sequenced them in 10 other dog breeds and found five, PLG, TCOF1, TG, COL9A2 and COL4A4, only in MD. We then investigated two rare and breed-specific missense SNPs (T/T SNPs), PLG: c.477G > T and c.478A>T, and found that ICRPs with the T/T SNP risk alleles showed less intact plasminogen and plasmin activity in the lesions compared to ICRPs without the risk alleles but no differences in serum. Moreover, we show that MMP9, which is an NF-κB target, caused the plasminogen reduction and that intestinal epithelial cells expressing plasminogen molecules were co-localized with epithelial cells expressing MMP9 in normal colons with the risk alleles. Importantly, MMP9 expression in patients with ulcerous colitis or Crohn's disease also co-localized with epithelial cells showing enhanced NF-κB activation and less plasminogen expression. Overall, our zoobiquity experiments showed that MMP9 induces the plasminogen reduction in the intestine, contributing to the development of local inflammation and suggesting the local MMP9-plasminogen axis is a therapeutic target in both dogs and patients. Therefore, zoobiquity-type experiments could bring new perspectives for biomarkers and therapeutic targets.


Assuntos
Doenças Inflamatórias Intestinais , Metaloproteinase 9 da Matriz , Humanos , Cães , Animais , Plasminogênio , NF-kappa B , Inflamação , Serina Proteases
9.
Int Immunol ; 35(7): 303-312, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719100

RESUMO

Dupuytren's contracture (DC) is an inflammatory fibrosis characterized by fibroproliferative disorders of the palmar aponeurosis, for which there is no effective treatment. Although several genome-wide association studies have identified risk alleles associated with DC, the functional linkage between these alleles and the pathogenesis remains elusive. We here focused on two single nucleotide polymorphisms (SNPs) associated with DC, rs16879765 and rs17171229, in secreted frizzled related protein 4 (SFRP4). We investigated the association of SRFP4 with the IL-6 amplifier, which amplifies the production of IL-6, growth factors and chemokines in non-immune cells and aggravates inflammatory diseases via NF-κB enhancement. Knockdown of SFRP4 suppressed activation of the IL-6 amplifier in vitro and in vivo, whereas the overexpression of SFRP4 induced the activation of NF-κB-mediated transcription activity. Mechanistically, SFRP4 induced NF-κB activation by directly binding to molecules of the ubiquitination SFC complex, such as IkBα and ßTrCP, followed by IkBα degradation. Furthermore, SFRP4 expression was significantly increased in fibroblasts derived from DC patients bearing the risk alleles. Consistently, fibroblasts with the risk alleles enhanced activation of the IL-6 amplifier. These findings indicate that the IL-6 amplifier is involved in the pathogenesis of DC, particularly in patients harboring the SFRP4 risk alleles. Therefore, SFRP4 is a potential therapeutic target for various inflammatory diseases and disorders, including DC.


Assuntos
Contratura de Dupuytren , Humanos , Contratura de Dupuytren/genética , Contratura de Dupuytren/patologia , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
10.
Front Immunol ; 13: 1066916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505494

RESUMO

Large-vessel vasculitis (LVV) is subclassified into two phenotypes; Takayasu arteritis and giant cell arteritis. Although the pathogenesis of LVV is not fully established, IL-6-IL-17 axis and IL-12-IFN-γ axis play critical roles in the disease development. We aimed to clarify the association between the disease state and cytokine/chemokine levels, to assess disease course as prognosis and to predict regulators in patients with LVV using the blood profiles of multiple cytokines/chemokines. This retrospective analysis comprised 35 LVV patients whose blood were collected, and multiplex cytokine/chemokine analysis with 28 analytes was performed. The differences of cytokines/chemokines corresponding disease status, upstream regulator analysis, pathway analysis and cluster analysis were conducted using the cytokines/chemokines profile. Relapse-free survival rate was calculated with Kaplan-Meier analysis in the classified clusters. In the robust analysis, IL-4, CCL2/MCP-1, TNFSF13/APRIL, TNFSF13B/BAFF, CHI3L1 and VEGF-A levels were significantly changed after treatment. Untreated LVV patients demonstrated activation of NFκB-related molecules and these patients are potentially treated with JAK/STAT inhibitors, anti-TNF-α inhibitors and IL-6 inhibitors. Cluster analysis in active LVV patients revealed two clusters including one with high blood levels of IL-1ß, IL-6, IL-17, IL-23 and CCL20/MIP-3. A subgroup of the LVV patients showed activated IL-17 signature with high relapse frequency, and JAK/TyK2 inhibitors and IFN-γ inhibitors were detected as potentially upstream inhibitors. Blood cytokine/chemokine profiles would be useful for prediction of relapse and potentially contributes to establish therapeutic strategy as precision medicine in LVV patients.


Assuntos
Citocinas , Interleucina-17 , Prognóstico , Interleucina-6 , Estudos Retrospectivos , Inibidores do Fator de Necrose Tumoral , Fator A de Crescimento do Endotélio Vascular , Quimiocinas
11.
Ann Rheum Dis ; 81(11): 1564-1575, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817472

RESUMO

OBJECTIVES: The central nervous system disorder in systemic lupus erythematosus (SLE), called neuropsychiatric lupus (NPSLE), is one of the most severe phenotypes with various clinical symptoms, including mood disorder, psychosis and delirium as diffuse neuropsychological manifestations (dNPSLE). Although stress is one of the aggravating factors for neuropsychiatric symptoms, its role in the pathogenesis of dNPSLE remains to be elucidated. We aimed to investigate stress effects on the neuropsychiatric pathophysiology in SLE using lupus-prone mice and patients' data. METHODS: Sleep disturbance stress (SDS) for 2 weeks was placed on 6-8-week-old female MRL/lpr and control mice. Behavioural phenotyping, histopathological analyses and gene and protein expression analyses were performed to assess SDS-induced neuroimmunological alterations. We also evaluated cytokines of the cerebrospinal fluid and brain regional volumes in patients with dNPSLE and patients with non-dNPSLE. RESULTS: SDS-subjected MRL/lpr mice exhibited less anxiety-like behaviour, whereas stressed control mice showed increased anxiety. Furthermore, stress strongly activated the medial prefrontal cortex (mPFC) in SDS-subjected MRL/lpr. A transcriptome analysis of the PFC revealed the upregulation of microglial activation-related genes, including Il12b. We confirmed that stress-induced microglial activation and the upregulation of interleukin (IL) 12/23p40 proteins and increased dendritic spines in the mPFC of stressed MRL/lpr mice. IL-12/23p40 neutralisation and tyrosine kinase 2 inhibition mitigated the stress-induced neuropsychiatric phenotypes of MRL/lpr mice. We also found a higher level of cerebrospinal fluid IL-12/23p40 and more atrophy in the mPFC of patients with dNPSLE than those with non-dNPSLE. CONCLUSIONS: The microglial IL-12/23 axis in the mPFC might be associated with the pathogenesis and a promising therapeutic target for dNPSLE.


Assuntos
Lúpus Eritematoso Sistêmico , Microglia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-12 , Subunidade p19 da Interleucina-23/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Camundongos , Camundongos Endogâmicos MRL lpr , Microglia/metabolismo , Estresse Fisiológico , TYK2 Quinase
12.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579694

RESUMO

Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions. Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron-interneuron crosstalk, with ATP at the core. Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side. Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side. These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.


Assuntos
Interneurônios , Células Receptoras Sensoriais , Trifosfato de Adenosina , Humanos , Inflamação , Reflexo/fisiologia
13.
Int Immunol ; 34(2): 59-65, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33978730

RESUMO

Gateway reflexes are neural circuits that maintain homeostasis of the immune system. They form gateways for autoreactive T cells to infiltrate the central nervous system in a noradrenaline-dependent manner despite the blood-brain barrier. This mechanism is critical not only for maintaining organ homeostasis but also for inflammatory disease development. Gateway reflexes can be regulated by environmental or artificial stimuli including electrical stimulation, suggesting that the infiltration of immune cells can be controlled by bioelectronic medicine. In this review, we describe the discovery of gateway reflexes and their future directions with special focus on bioelectronic medicine.


Assuntos
Sistema Nervoso Central , Linfócitos T , Barreira Hematoencefálica , Neurônios , Norepinefrina
14.
Br J Haematol ; 196(5): 1194-1204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873687

RESUMO

Multicentric Castleman disease-thrombocytopenia, anasarca, reticulin fibrosis of bone marrow, renal dysfunction and organomegaly (MCD-TAFRO)-is an emergent phenotype characterized by lymphoproliferation, fluid collection, hemocytopenia and multiple organopathy. Although studies have demonstrated an aberrant blood cytokine/chemokine profile referred to as "chemokine storm", the pathogenesis remains unclear. We aimed to identify pathogenic key molecules, potential diagnostic targets and therapeutic markers in MCD-TAFRO using serum cytokine/chemokine profiles. We performed the targeted cytokine/chemokine multiplex analysis in six cases of MCD-TAFRO with remission or non-remission status. We observed significant changes in serum concentrations of CCL2, CCL5, and Chitinase-3-like-1 in the MCD-TAFRO patients with active state compared to inactive state. Ingenuity pathway analysis revealed that glycogen synthase kinase 3 (GSK3) and CCR6, which is expressed in megakaryocytes, were detected as upstream positive regulators for activating MCD-TAFRO status. More GSK3ß+ CCR6+ cells like megakaryocytes were detected in the bone marrow of patients with MCD-TAFRO than in those with systemic lupus erythematosus, MCD-not otherwise specified or autoimmune haemophagocytic lymphohistiocytosis. The cellularity of GSK3ß+ CCR6+ cells was correlated with disease activity, including thrombocytopenia and anaemia. In conclusion, GSK3ß and CCR6 of bone marrow cells were potentially involved in the pathogenesis of MCD-TAFRO and may act as diagnostic targets and therapeutic markers.


Assuntos
Medula Óssea/patologia , Hiperplasia do Linfonodo Gigante/patologia , Glicogênio Sintase Quinase 3 beta/análise , Receptores CCR6/análise , Adulto , Idoso , Hiperplasia do Linfonodo Gigante/complicações , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Masculino , Pessoa de Meia-Idade
15.
Front Immunol ; 12: 675909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113349

RESUMO

The lipopolysaccharides (LPSs) of Rhodobacter are reported to be TLR4 antagonists. Accordingly, the extract of Rhodobacter azotoformans (RAP99) is used as a health supplement for humans and animals in Japan to regulate immune responses in vivo. We previously analyzed the LPS structure of RAP99 (RAP99-LPS) and found it is different from that of E. coli-LPS but similar to lipid A from Rhodobacter sphaeroides (RSLA), a known antagonist of TLR4, with both having three C14 fatty acyl groups, two C10 fatty acyl groups, and two phosphates. Here we show that RAP99-LPS has an immune stimulatory activity and acts as a TLR4 agonist. Pretreatment of RAP99-LPS suppressed E. coli-LPS-mediated weight loss, suggesting it is an antagonist against E. coli-LPS like other LPS isolated from Rhodobacter. However, injections of RAP99-LPS caused splenomegaly and increased immune cell numbers in C57BL/6 mice but not in C3H/HeJ mice, suggesting that RAP99-LPS stimulates immune cells via TLR4. Consistently, RAP99-LPS suppressed the lung metastasis of B16F1 tumor cells and enhanced the expression of TLR3-mediated chemokines. These results suggest that RAP99-LPS is a TLR4 agonist that enhances the activation status of the immune system to promote anti-viral and anti-tumor activity in vivo.


Assuntos
Quimiocinas/genética , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Rhodobacter/química , Receptor 3 Toll-Like/fisiologia , Receptor 4 Toll-Like/agonistas , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Fator de Transcrição STAT3/fisiologia
16.
Int Immunol ; 33(8): 423-434, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34036345

RESUMO

Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation with lymphoid infiltration and destruction of the salivary glands. Although many genome-wide association studies have revealed disease-associated risk alleles, the functions of the majority of these alleles are unclear. Here, we show previously unrecognized roles of GTF2I molecules by using two SS-associated single nucleotide polymorphisms (SNPs), rs73366469 and rs117026326 (GTF2I SNPs). We found that the risk alleles of GTF2I SNPs increased GTF2I expression and enhanced nuclear factor-kappa B (NF-κB) activation in human salivary gland cells via the NF-κB p65 subunit. Indeed, the knockdown of GTF2I suppressed inflammatory responses in mouse endothelial cells and in vivo. Conversely, the over-expression of GTF2I enhanced NF-κB reporter activity depending on its p65-binding N-terminal leucine zipper domain. GTF2I is highly expressed in the human salivary gland cells of SS patients expressing the risk alleles. Consistently, the risk alleles of GTF2I SNPs were strongly associated with activation of the IL-6 amplifier, which is hyperactivation machinery of the NF-κB pathway, and lymphoid infiltration in the salivary glands of SS patients. These results demonstrated that GTF2I expression in salivary glands is increased in the presence of the risk alleles of GTF2I SNPs, resulting in activation of the NF-κB pathway in salivary gland cells. They also suggest that GTF2I could be a new therapeutic target for SS.


Assuntos
Inflamação/genética , Polimorfismo de Nucleotídeo Único/genética , Glândulas Salivares/patologia , Síndrome de Sjogren/genética , Fatores de Transcrição TFII/genética , Adulto , Idoso , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Células Cultivadas , Células Endoteliais/patologia , Células Epiteliais/patologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/genética , Transdução de Sinais/genética
17.
Front Immunol ; 12: 780451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003096

RESUMO

The gateway reflex explains how autoreactive CD4+ T cells cause inflammation in tissues that have blood-barriers, such as the central nervous system and retina. It depends on neural activations in response to specific external stimuli, such as gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an increase of chemokine expression as well as a reduction of tight junction molecules to accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway reflex with a special interest in mechanosensory transduction (mechanotransduction).


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mecanotransdução Celular/imunologia , Neuroimunomodulação , Doenças Neuroinflamatórias/imunologia , Animais , Barreira Hematoencefálica/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Mecanorreceptores/imunologia , Mecanorreceptores/metabolismo , NF-kappa B/metabolismo , Norepinefrina/metabolismo , Transdução de Sinais/imunologia , Canais de Cátion TRPV/metabolismo
18.
Inflamm Regen ; 40: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014208

RESUMO

The newly emerging coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, but has rapidly spread all over the world. Some COVID-19 patients encounter a severe symptom of acute respiratory distress syndrome (ARDS) with high mortality. This high severity is dependent on a cytokine storm, most likely induced by the interleukin-6 (IL-6) amplifier, which is hyper-activation machinery that regulates the nuclear factor kappa B (NF-κB) pathway and stimulated by the simultaneous activation of IL-6-signal transducer and activator of transcription 3 (STAT3) and NF-κB signaling in non-immune cells including alveolar epithelial cells and endothelial cells. We hypothesize that IL-6-STAT3 signaling is a promising therapeutic target for the cytokine storm in COVID-19, because IL-6 is a major STAT3 stimulator, particularly during inflammation. We herein review the pathogenic mechanism and potential therapeutic targets of ARDS in COVID-19 patients.

19.
PLoS One ; 15(6): e0234147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479530

RESUMO

Conversion of cellular prion protein (PrPC) into the pathogenic isoform of prion protein (PrPSc) in neurons is one of the key pathophysiological events in prion diseases. However, the molecular mechanism of neurodegeneration in prion diseases has yet to be fully elucidated because of a lack of suitable experimental models for analyzing neuron-autonomous responses to prion infection. In the present study, we used neuron-enriched primary cultures of cortical and thalamic mouse neurons to analyze autonomous neuronal responses to prion infection. PrPSc levels in neurons increased over the time after prion infection; however, no obvious neuronal losses or neurite alterations were observed. Interestingly, a finer analysis of individual neurons co-stained with PrPSc and phosphorylated protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (p-PERK), the early cellular response of the PERK-eukaryotic initiation factor 2 (eIF2α) pathway, demonstrated a positive correlation between the number of PrPSc granular stains and p-PERK granular stains, in cortical neurons at 21 dpi. Although the phosphorylation of PERK was enhanced in prion-infected cortical neurons, there was no sign of subsequent translational repression of synaptic protein synthesis or activations of downstream unfolded protein response (UPR) in the PERK-eIF2α pathway. These results suggest that PrPSc production in neurons induces ER stress in a neuron-autonomous manner; however, it does not fully activate UPR in prion-infected neurons. Our findings provide insights into the autonomous neuronal responses to prion propagation and the involvement of neuron-non-autonomous factor(s) in the mechanisms of neurodegeneration in prion diseases.


Assuntos
Neurônios/metabolismo , Proteínas PrPSc/metabolismo , eIF-2 Quinase/metabolismo , Animais , Células Cultivadas , Estresse do Retículo Endoplasmático , Camundongos , Camundongos Endogâmicos ICR , Crescimento Neuronal , Neurônios/citologia , Fosforilação , Proteínas PrPSc/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Resposta a Proteínas não Dobradas
20.
Sci Rep ; 10(1): 7168, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346055

RESUMO

West Nile virus (WNV) is an important cause of viral encephalitis in birds and animals, including humans. Amino acid 159 of the envelope (E) protein is reportedly implicated in the different levels of neurovirulence in mice infected with WNV NY99 or Eg101. We investigated the role of amino acid 159 of the E protein in the pathogenesis of WNV infection. We produced recombinant WNV with the structural proteins of the NY99 or Eg101 strain (NY-WT or EgCME-WT) and mutant viruses with substitutions of amino acid 159 of the E protein (NY-E-V159I or EgCME-E-I159V). The NY-WT and NY-E-V159I or EgCME-WT and EgCME-E-I159V titers in culture supernatant were similar. The mortality rate and viral titer in the brains of mice inoculated intraperitoneally with NY-WT or NY-E-V159I were also similar. In contrast, the mortality rate and viral titer in the brains of mice inoculated intracranially with EgCME-E-I159V were significantly higher than those of mice inoculated with EgCME-WT. The numbers of CD3-positive and CD8-positive T cells were greater in brains inoculated with EgCME-E-I159V than in those inoculated with EgCME-WT. Therefore, amino acid 159 of the E protein modulates the pathogenicity of WNV by affecting viral replication and T-cell infiltration in the brain.


Assuntos
Encéfalo , Linfócitos T , Proteínas do Envelope Viral , Replicação Viral , Febre do Nilo Ocidental , Vírus do Nilo Ocidental/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Linfócitos T/metabolismo , Linfócitos T/patologia , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA